Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions.
نویسندگان
چکیده
Silver nanocubes dispersed in water were transformed into Pd-Ag or Pt-Ag nanoboxes by adding either Na(2)PdCl(4) or Na(2)PtCl(4). By controlling the amount of noble metal salt added, and therefore the molar ratio of Na(2)PdCl(4) or Na(2)PtCl(4) to Ag, we could tune the surface plasmon resonance peak of the nanostructures across the entire visible spectrum, from 440 to 730 nm. Replacement of Ag with Pd resulted in the formation of a nanobox composed of a Pd-Ag alloy single crystal, but the nanobox formed after replacement of Ag with Pt was instead composed of distinct Pt nanoparticles. DDA calculations suggest that both nanoboxes absorb light strongly, with Q(abs)/Q(sca) approximately 5. After galvanic replacement, Pd-Ag and Pt-Ag nanostructures remain SERS active, suggesting their use as a SERS probe for studying the dependence of interfacial chemistry on composition.
منابع مشابه
Tuning Interior Nanogaps of Double-shelled Au/Ag Nanoboxes for Surface-Enhanced Raman Scattering
Double-shelled Au/Ag hollow nanoboxes with precisely controlled interior nanogaps (1 to 16 nm) were synthesized for gap-tunable surface-enhanced Raman scattering (SERS). The double-shelled nanoboxes were prepared via a two-step galvanic replacement reaction approach using Ag nanocubes as the templates, while 4-aminothiolphenol (4-ATP) as SERS probe molecules were loaded between the two shells. ...
متن کاملTailoring the Optical and Catalytic Properties of Gold-Silver Nanoboxes and Nanocages by Introducing Palladium.
Noble metal nanostructures are of great interest because of their potential applications including biomedical imaging, surface-enhanced Raman scattering (SERS), and catalysis. Gold and silver nanostructures, in particular, have been most extensively studied because their localized surface plasmon resonance (LSPR) peaks are positioned in the visible and near-infrared regions, an attribute that a...
متن کاملSimple and Versatile Route to the Synthesis of Anisotropic Bimetallic Core-shell
We report herewith a simple and versatile route for the preparation of anisotropic Ag(AgCl)-Pt core-shell nanocubes and Pt nanoboxes. The core-shell nanocubes were first synthesized through the simultaneous reduction method and then treated with bis-(p-sulfonatophenyl)-phenylphosphine (BSPP) to remove the core materials. The changes in morphology, structure and composition during these synthese...
متن کاملKinetic study of Pt nanocrystal deposition on Ag nanowires with clean surfaces via galvanic replacement
Without using any templates or surfactants, this study develops a high-yield process to prepare vertical Ag-Pt core-shell nanowires (NWs) by thermally assisted photoreduction of Ag NWs and successive galvanic replacement between Ag and Pt ions. The clean surface of Ag nanowires allows Pt ions to reduce and deposit on it and forms a compact sheath comprising Pt nanocrystals. The core-shell struc...
متن کاملCage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.
Precisely tailoring the structure and fully making use of the components of nanoparticles are effective to enhance their catalytic performance for a given reaction. We herein demonstrate the design of cage-bell structured Pt-Pd nanoparticles, where a Pd shell is deliberately selected to enhance the catalytic property and methanol tolerance of Pt for oxygen reduction reaction. This strategy star...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 5 10 شماره
صفحات -
تاریخ انتشار 2005